CS161 Syllabus

This handout contains the tentative syllabus for CS161. Depending on how quickly we're able to cover various topics, we may proceed more quickly or more slowly than the syllabus indicates.

Readings are taken from *Algorithm Design* by Jon Kleinberg and Eva Tardos.

	Date	Topics	Readings	Assignments			
м	June 24	How do we reason about algorithms? Course Overview Analyzing an Algorithm: Insertion Sort O, Ω , and Θ notation	2.1 – 2.2, 2.4				
	Part One: Fundamental Graph Algorithms						
W	June 26	How do we find shortest paths in a graph? Breadth-First Search Graph Representations Dijkstra's Algorithm I	3.1 - 3.3, 4.4	Problem Set 1 Out			
F	June 28	How do we explore graphs? Dijkstra's Algorithm II Depth-First Search Directed Acyclic Graphs	3.5 - 3.6				
м	July 1	How do we order prerequisites? Topological Sorting Strongly-Connected Components Kosaraju's Algorithm I	Notes				
W	July 3	What are the applications of graph theory? Kosaraju's Algorithm II Applications of Strongly-Connected Components	Notes	Problem Set 1 Due Problem Set 2 Out			
	Part Two: Divide-and-Conquer Algorithms						
F	July 5	How do we analyze recursive algorithms? Mergesort Recurrence Relations Binary Search	5.1				
м	July 8	How can we efficiently implement priority queues? Binary Heaps Heapsort A Lower Bound on Sorting	2.5				
W	July 10	How do we solve divide-and-conquer recurrences? The Master Theorem Applications of the Master Theorem	5.2, Notes				
F	July 12	How do we solve non-uniform recurrences? The Median-of-Medians Algorithm The Substitution Method I	Notes	Problem Set 2 Due Problem Set 3 Out			

Part Three: Randomized Algorithms							
M July 15	Can random guesses improve performance? The Substitution Method II Quickselect Linearity of Expectation	13.3, 13.5					
w July 17	How do we precisely analyze randomized algorithms? Quicksort Indicator Random Variables Finding Large Cuts	13.5					
F July 19	Can we guess the right answer with high confidence? Monte Carlo Algorithms Karger's Min-Cut Algorithm	13.2					
M July 22	How can we efficiently store associative data? Hash Functions Hash Tables	13.6	Problem Set 3 Due Problem Set 4 Out				
Part Four: Greedy Algorithms							
w July 24	Can locally optimal decisions be globally optimal? Interval Scheduling "Greedy Stays Ahead"	4.1 - 4.2					
F July 26	How do you link up nodes at a low cost? Minimum Spanning Trees Prim's Algorithm	4.5					
M July 29	Can we locally modify solutions to build better ones? Exchange Arguments Dijkstra's Algorithm Revisited Kruskal's Algorithm	4.4 - 4.6	Problem Set 4 Due Problem Set 5 Out				
Part Five: Dynamic Programming							
₩ July 31	Can we reuse work across subcomputations? Linear Independent Set Definition of Dynamic Programming Sequence Alignment I	6.1 - 6.2, 6.6					
F August 2	How do Internet routers find paths? Sequence Alignment II The Bellman-Ford Algorithm	6.8					
M August 5	Can we precompute shortest paths everywhere? The Floyd-Warshall Algorithm Johnson's Algorithm	6.8 - 6.9	Problem Set 5 Due Problem Set 6 Out				
Part Six: Intractable Problems							
W August 7	How do you approach intractable problems? NP-Hardness The Knapsack Problem Pseudopolynomial-Time Algorithms	8.1 - 8.5, 6.4					

F August 9	Can we find simple cases of otherwise hard problems? Independent Set on Trees	10.2	
M August 12	Can we guess the answer to hard problems? Randomized Approximation Algorithms MAX-3SAT	13.4	Problem Set 6 Due Final Project Out
₩ August 14	<i>Where do we go from here?</i> Further Topics in Algorithms		
Sa August 17	Final Project Due at 12:15PM No Late Submissions		